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Abstract

This paper presents a computational studghetthangeof the logic-basedconceptgo arithmetic-
basedconceptsin inductive learning from examples.Specifically, we addresghe problem of

learning conceptswhose description in the original knowledge representatiorspaceis very

complexand difficult to learn using a conventionalmachinelearning approach. Bydetecting
"exclusive-or" patterns in the initially created hypotheses, the system postulates syralaigbrys
amongpairsof initial attributes.The symmetrypairsare then combinednto maximal symmetry
groups. Each symmetry group leadsa creationof a countingattribute which is addedasa new
dimension to the representationspace. So modified representationspace facilitates the

determination of new type of concept descriptiaradled conditional M-of-N rules. The proposed
ideas are illustrated by a visualization method based on the generalized logic diagram (GLD).

Keywords. constructive induction, representation change, concept learning

ACKNOWLEDGMENTS

The authors thank Ken Kaufman fleis commentson this work. This researchwas conductedn
the Center for Machine Learning and Inference at George Mason University. The Ceséarr'sh
is supportedn part by the National ScienceFoundationunder GrantsNo. CDA-9309725,IRI-
9020266, and DMI-9496192, in part by the Advanced Research PragetsyunderGrantNo.
NO00014-91-J-1854administeredyy the Office of Naval Researchthe Grant No. F49620-92-J-
0549, administeredby the Air ForceOffice of Scientific Researchand in part by the Office of
Naval Research under Grant No. NO0014-91-J-1351.



1 INTRODUCTION

Traditional concept learningiethodsexpresshe learnedhypothesisusing attributesor termsthat
are present in the training examples. In other words, they iledine samerepresentatiospacein
which training examplesare presentedFor many practical problemsthis is a seriouslimitation,
because concepts to be learned require attributes or terms that go beyond those originally provide:

To attacksuchproblems,a constructiveinduction approachsplits the learning processinto two
intertwined searchesone—for the most appropriaterepresentatiorspacefor the given learning
problem,and second—forthe "best" inductive hypothesisn the newly createdspace (Wnelkand
Michalski, 1994b).

The searchfor the most appropriaterepresentatiorspaceis performedby applying constructive
induction operators ("Cl operators") that perform problem-oriented modifications of the
representation space. Sugprocesscaninvolve threetypesof spacetransformationsgenerating

new, more relevant dimensions(inventing new descriptive concepts),removing less relevant
dimensiongrepresentatiospacereductionor “feature selection")and changingthe quantization

level of dimensions(dimensionabstraction).There are many specific operatorsfor performing
suchchangeqespeciallyof the first type). Searchingthrough possiblerepresentatiorspacess,
therefore, impractical without some powerful shortcuts. Thus, the fundamental research problem ir
constructive induction concerns waysreflucingthis searchby inventing heuristicsand methods

that govern the search for the best representation.

This paperaddresses class of learning problemsfor which conventionalsymbolic methods
produceDNF-type descriptions that are prohibitively long. The essentieeqdroblemis thatthese
methods cannot simply represent concepts that involve counting of properties detanteb|j@ct.
An exampleof a "counting property"is the M-of-N concept(at leastM out of N propertiesof a
certain kind are present in an object). Problefthis type occurin variousreal-world problems,
for example,in medicine (Spackman,1988), planning (Callan & Utgoff, 1991), gameplaying
(Fawcett & Utgoff, 1991), biology (Baffes & Mooney, 1993)and biochemistry (Towell &

Shavlik, 1994).

The proposednethodaddressea classof problemsthat requirelearningdescriptionscombining
one or morev-of-N conceptswith oneor more DNF expressionsSuchcombineddescriptionsare
calledconditionalm-of-N rules. The well-knowm-of-N rulesarethusa specialcaseof conditional
M-of-N rules.

The representationamechanismproposedextendsthe meaningof M-of-N concepts.The usual
meaning oiv-of-N is that "at leasM out of N possiblepropertiesare presentin an object.” In the
presentednethod,an arbitrary subset of'M" valuescan be easily representedyhich facilitates
learningsuchconceptsas “parity” (evenor oddnumberof counts)or an arbitrary count of any
properties occurring ian entity. The methodthus significantly extendsthe classof conceptghat
can be easily learned and represented.

2. RELATED RESEARCH

The proposed method is closely related to the earlier pMichalski (1969)and Jensen (1975)

on the detectiorof symmetryin logic functions, and the introduction of the counting attribute
inductive generalization rul@ichalski, 1983). It is alsorelatedto the work by Seshu(1989) on
learning concept descriptions that are logically equivalent to a combinatiov® ahdm-of-N rules,

but in thecontextof decisiontree learning.His methoddetermines’best” XOR combinationsn a
randomlyselectedsubset otthe original attributes.Although this methodimprovesthe prediction
accuracy of learned descriptions, the attributes created this way have unclear meaning. &iso, due
the randomness of selection, the system may miss important relationships.

Our recentresearchn this directionwas triggeredby the difficulties experiencedoy well-known
symbolic learning systems in solving theNk2 problem(one of threeproblemsemployedin the
internationalcompetitionof learning programs, organizedon the occasionof the International



Schoolin MachineLearningin Belgium, 1991) (Thrunetal, 1991; Wnek & Michalski, 1994a).
The MONK2 problemis to learn the concept:"Exactly two of the six attributeshave their first
value,"” which is a specialcaseof the M-of-N concept.Learningthis conceptturnedto be very
difficult for methodsoriented toward learning DNF-type descriptions(a logical disjunction of
conjunctive concepts), such as decision tregeaisionrule learningmethods.The reasonfor the
difficulty is thata learningsystemneedsto representan M-of-N concept,which is very difficult
USINgDNF expressions.

In recentyearsthere have beerseveralefforts on learningM-of-N concepts.Spackman(1998)
developed theRLs system thatearnsMm-of-N rules by employingnon-equivalencaymmetrybias
and criteria tables. Murphy & Pazzani (1991) developetthef-3 systemthat incorporatesvi-of-
N testsin decisiontrees. Bloedorn & Michalski (1991) developedAQ17-DCI a program that
employsa variety of operatorsto constructnew attributes.Fawcettand Utgoff (1991) usedan
attribute representation similar to thechalski's (1983) countingargumentgyeneralizatiorrule to
expand the original representation spdtallanand Utgoff (1991)developeda restrictedform of
the countingargumentsule to createa numericfunction from a Booleanexpressiorthat begins
with a universal quantifier. More recently, Baffed\ooney (1993)introducedthe NEITHER-M-of-
N system, which refinesi-of-N rules by increasing or decreasing either M or N.

The methoddescribechereaimsat learningdescriptionghat combine M-of-N conceptswith DNF
expressionsTo this end, it searchedor attribute symmetrythat is evidencedby "exclusive-or"
(XOR) patterns in the initially construct@iF concept descriptions. Based e XOR-patternsthe
systempostulatessymmetryrelationsamongpairs of initial attributes.The symmetricalattributes
are combined into maximal symmetry classes. Each symmetry classdeagationof a counting
attribute which is addedas a new dimensionto the representatiorspace.The new counting
attributes enable representing and learning a class of legm@bgmsthat requirecombinationof
logic-type ONF) and arithmetic-typeM-of-N) concepts, i.egonditionalM-of-N rules

3 THE AQ-HCI METHOD

3.1. Patterns in Descriptions

The proposedaQ-Hcl methodis hypothesis-drivenwhich meansthat changesof the concept
representatiospaceare proposed byanalyzinghypothesegeneratedn that spaceratherthan by
analyzingtraining data. The methodis called AQ-HCI, becausdat combinesan AQ-type inductive
rule learningsystem(specifically,AQ15; Michalski et al., 1986)with a procedurefor an iterative
hypothesis-driven constructive inductioic() for transforming the representation space.

Changesn the representatiospaceare basedon detectingcertainregularities,called patterns in
concept descriptions (rulesets). Pattedatectedn descriptionsobtainedin oneiterationare used
to transform the representationspacefor the next iteration. In this context, a patternis a
componentor a setof componentof a descriptionthat accountsfor a significant number of
training examplesThe "significant" numberis definedby a user-specifiegparameterOur earlier
work in this area involved search for three types of patterns: value-patterns, condition-patterns, an
rule-patterns.Value-patternsare subsetsof frequently co-occurring attribute values (they are
aggregated into single, more abstract values). Condition-patterns repressjurationof two or
more elementaryconditions.A rule-patternconsists ofa subset ofrules. Detectingsuch patterns
and using them for enhancingthe representatiorspacehave proven to be highly effective in
improving the performance accuracybiNF-type learning problems (Wnek & Michalski, 1994b).

In addition ofthe abovepatterns, wéhaverecentlyalsointroducedfunctional-patternswhich are

certain subfunctionsoccurringin a classdescription.For example,symmetricalfunctions XOR
(exclusive-or)or EQ (equivalence)f two (or more) attributesin a descriptionmay constitutea
patternif they cover a significant number of training examples.XOR patternsare particularly
interesting,becausehey are directly relevantto determiningM-of-N concepts.The XOR-patterns
identify subsets of attributes related to ithef-N arithmeticsubconcepinvolved in the description

of the learned concept and enable the arithmetic subconcept to emerge through the application of tl
counting attribute generation rule.



Sections3.2-3.3 explorethe problemof detectingsymmetryin conceptdescriptionsSection3.4
introducesthe counting attribute generationrule. Section 3.5 justifies the rule by showing a
multistageprocess ofconstructingcountingattributes,andrelateslogic to arithmetic.Section3.6
describes an application of the counting attrilgégeratiorrule in an algorithmfor improving the
original representatiorspace.Section4 presentsa casestudy of learningthe MONK2 problem.
Section 5 gives results from experiments performed on various condiioenal concepts.

3.2 Symmetrical Functions And Concepts

Conceptlearning from examplescan be viewed as learning an incompletely specified discrete
function (Michalski, 1969; Michalski, Rosenfeld and Aloimonos, 1994). The function is
incompletely specified because the set of examples usually ervaustsall possibleinstancef
that function. In single concept learning, the function takes value 1 fanstaycethat belongsto
the concept and value 0, otherwise. In "multiple-valued" coreapting,the function takesmore
than two discrete values.

Following Michalski (1969), a function f(x4, X, ..., X,) is called symmetricalwith respectto
variables{x;, x} if

fo X o % ) =00 % s %, 00) Q)
where,n>=2,0<i<=n,0<j<=n,i<>].

From now on, we assume ftire sakeof simplicity thatthe two symmetricalvariablesare placed
as the first twaargumentof the function, andthe remainingvariablesare denotedby R ("rest").
Since concepts can be characterized as discrete functiomdregeicethe following definition. A
conceptC(x, y, R) is calledsymmetricalwith respectto attributesx andy, if for all instancesof
that concept:

Cx,y, R)=C(y, x, R) 2)

This definition implies that the domains(value sets) ofthe attributesx andy are the same.The
definition is applicablefor both single and multiple-valuedconceptlearning. Symmetry of the
conceptC(x, y, R) with respecto attributesx andy implies existenceof a symmetricalrelation
between instances of that concept. There are two interesting cases of symmetrical functions that c:
be embedded within a concept description.

(1) Equivalence symmetry — EQ: (X &y or ~x & ~y)

Figure 1 illustratesthe equivalencesymmetry.The representatiorspaceis defined by 4 binary
attributes, x0, x1, x2, x3. The figure shows projection of a concept on the area describeé& by (x0
x2) or (~x0 & ~x2). The describezbnceptis characterizedby values+ (positive examplesiand-
(negative examples). The gray area in the diagram marks that part of the concept that is itwelevant
the equivalence symmetry of xéhdx2. Examplesel ande2 are describedby the following VL1
formulas(VL1 stands forthe variable-valuedogic systeml1, which is a form of propositional
calculus; Michalski, 1975):

el<: x0& x2&x1 & ~x3
e2<:x0& —x2 & x1 & ~x3

Exampleel has two"1s" asvaluesof x0 andx2. Examplee2 has two"0s" as valuesof those
attributes. Attribute values of the remaining attributes, xb@dare the samefor both examples.
The name"equivalencesymmetry”comesfrom the fact that both attributestake always the same
value. The diagramto the right, hasa different arrangemenbf attributes.Attributes x0 and x2

were switched. Concept examples have correspondingly switched places; howesepivalues
were not changeddue to the equivalencesymmetry. The areasthat switched examplesare
described by the following VL1 formulas:



Sl1<: x0& x2
S2 <i: %0 & ~x2
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Figure 1. Equivalence symmetry with respect to attributes x0 and x2

(2) Exclusive-or symmetry — XOR (X & ~y or ~x & y)

Figure 2 illustratesthe exclusive-orsymmetry. The representatiorspaceis definedby 4 binary
attributes, x0, x1, x2, x3. The figure showprojectionof threeconceptyC1, C2, C3) onto the
areadescribedby (x0 & ~x2) or (X2 & ~x0). The gray areain the diagrammarksthe part of the
conceptthat is irrelevantin the exclusive-orsymmetryof x0 and x2. Examplesel and e2 are
described by the followingL1 formulas yL1 stands for the variable-valued logic syst&énwhich
is a form of propositional calculus; Michalski, 1975):

el <::~x0 & x2 & ~x1 & ~x3

e2 <i:~x2 & x0 & ~x1 & ~x3

Exampleel has two"1s" asvaluesof x0 andx2. Examplee2 has two"0s" as valuesof those
attributes. Attribute values of the remaining attributes, xb@dare the samefor both examples.
The name "exclusive-or symmetry" comes from the fact that the attribute f@loean exclusive-
or. The diagramto the right hasa different arrangemenof attributes.Attributesx0 and x2 were
switched. Concept examples have correspondingly switched places, however, conceptaralues
not changed due to the exclusive-or symmetry. dileasthat switchedexamplesare describedoy
the following VL1 formulas:

S1 <::~x0 & x2

S2 <i:~x2 & x0
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Figure 2. Exclusive-or symmetry with respect to attributes x0 and x2



Figure 3 illustrates all possibR symmetries between the foattributes.Eachsymmetricalpair
of examplesmust have the sameclassmembershipbut different pairs can belong to different
classes.
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Figure 3. Visualization of all possiblgOR symmetries between attributes x0,x1,x2,x3
An important property of theorR symmetrical function is that it is transitive.

Theorem. The XOR relation is transitive.
0 X, Yy, ZXORy & XORy, => XOR,, (3)

Proof.

We prove that for every examplecoveredby XORy;, there exists a symmetricalexample,i.e.
XOR(~X, Y, z, R) = XOR(x, y, ~z, R).

XOR(~X, Y, z, R) = XOR(X, ~y, z, R) { Based on XORy}

XOR(X, ~y, z, R) = XOR(X, Y, ~z, R) { Based on XOR} Q.E.D.

Figure 4 illustrates the transitivity property. From the fact that a concept is symmeiticetgard
to two pairs of attributes (x0, x1) and (x1, x2), it is easy to see that the conalsptsgmmetrical
with regard to the pair (x0, x2). A demonstration is given for the two examples of concep&aC2. In
similar way, symmetricalexamplescanbe found for all otherexamplescoveredby the XOR(x0,
x2, R) symmetry. Below, the two steps are also illustratedgVvL1 descriptionsof examplesg,

e', e".



(edC2)<:~x0& x2& x1 & ~x3

(e'dC2)<:: x0& x2 & ~x1& ~x3 ; XOR(x0,x1,R) applied
(e"OC2)<:: x0&x%x2& ~x1 & ~x3 ; XOR(x1,x2,R) applied
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Figure 4. Transitivity of thexoR symmetrical relation
The following lemma and theorem link symmetrical concepts MAtRN concepts.

Lemma

For all M-of-N concepts; for each pair of attributes (x,y); for each concept example
(counterexampleyvith (x=1 & y=0) or (x=0 & y=1) values, there exists one andonly one
symmetrical example (counterexample) with (x=0 & y=1) or (x=1 & y=0) values, respectively.

Pr oof

Let e+ be a positive example of a M-of-N concept C. Let the (X,y) attrgaitehavethe following
values (x=1 &y=0). Let Y be the setof counts.This setdoesnot changef the (x,y) hasvalues
(x=0 & y=1) because the number of "0s" and "1s" remains the same. This meansrtaed)y
switching valuesof the two attributesis also exampleof the conceptC. Thereis only one such
example because of the way e' is constructed. The proof for negative examples is Srailar.

Theorem 2

C isaM-of-N conceptif andonly if it is XOR symmetricalwith respectto eachpair of the N
attributes.

Proof.

Based on the lemma, the fact that ®4sf-N concept implies that for all pairs frohh attributesthe
concept iXOR symmetrical.

Proving reverse implication is obvious. Q.E.D.

Figures 5A and 5B illustrate representation spacghich all attributesare XOR symmetricalwith

each other. In Fig. 5A, there are five distinct symmetacaasdepictedby five different patterns.
By assigningvariousclassmembershipgo eachpatternit is possibleto createmany different,
symmetricalwith respecto the four attributes,combinationsof multiple-valuedconcepts.Since
there may be up to five different concepts(valuesof concepts)representedand they can be
assignedo five different areas,thereare 4° (4096) possible symmetrical combinations.(This
calculationis similar to using four-basedcounting system, on five positions). In the caseof



representingpositive and negative examplesof a single concept, there are 2° (32) possible
combinationsFig. 5B illustrates6 dimensionalsymmetricalrepresentatiorspace.Fig. 6 shows
the 4D representation space with a possible arrangement of five symmetrical concepts.
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A. 4-dimensional representation space. B. 6-dimensional representation space.

Figure 5. Symmetrical representation spaces.
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Co, C1, C2, C3, Ca - concepts
Figure 6. Five symmetrical concepts.



Figure 7A shows the 4D representation space and a possible arrangement of two symmittrical,
respecto the four attributes,conceptsC0O and C1. In sucha binary setting, one conceptcan be
regardedas a negationof the other one. Examplesof the targetconceptare usually labeledas
"positive” and its negation as "negative." This is visualized in the diagr&ing.iYB. The concept
labeled with "C1" or "+" is the "odd" concept. Its negation is the "even" conceptoBdtbmare
cases of symmetrical (or-of-N) concepts: odd-of-4 and even-of-4 (Figure 8).

8/ C[Co & [o] 2 ==\ [,

x1|x0 x1|x08

@ |1 |8 |1 |x3 @ |1 |8 |1 |x3
%] 1 x2 %) 1 x2

Co, C1 - concepts + == - concepts
Figure 7. Two symmetrical parity concepts: odd (C1, +) and even (CO, -).

+ + + + ie — e — + ie | o — — ia
+[+[+]=| [o],| [=[*][+]=] [o].| [=]=]=][#] [°],
+ - e — 1 + - | - 1 — + + + 1
x1 (%<8 x1|x0 x1|x0@
8 |1 |8 |1 |x3 8 |1 ]e |1 |x3 8 [1 |08 [1 |x3
"] 1 x2 7} 1 x2 7} 1 x2
A. At most 2-of-4 B. Exactly 2-of-4 C. At least 3-of-4
(standard M-of-N concept)
=[+[+]=] [o].] [=[*][+]=] [°].] [*[=]=T#] [].
I QU R | | | | | |
+ | e — %1, + — | — + il — + + — %1,
— ] — + 1 — + + — 1 + - — + 1
x1|x@8 x1|x0 x1|x@
8 |1 |8 |1 |x3 8 |1 |8 |1 |x3 8 |1 |8 |1 |x3
o 1 x2 7} 1 x2 a 1 x2
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Figure 8. Examples of symmetrical concepts in 4-dimensional representation space.
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3.3 Relational Conditions and Symmetry Classes (SC)

Let Ci be relationalconditionson valuesof single attributes,such asxi=5, xi>3 or xi=2..5 (as
defined in variable-valued logia_1, Michalski, 1975). Relational conditions evaluatérte (1) or
false (0). Suchconditionsare building blocksin the rulesgeneratedy the rule learning system
AQ15 employed in the proposed method (Michalski et al., 1986).

Let R1 andR2 be twoconjunctiverulesin a rulesetrepresenting hypothesis.Supposer1 canbe
represented aSi & ~Cj & CTX1 andR2 asCj & ~Ci & CTX2, whereCTx1 andCTX2 are"context"
conditions, expressed in the form of@njunctionof zeroor morerelationalconditions.It is said
thatCi andCj represent "binary symmetryclass"for the hypothesisjf CTX1 andCTx2 arein a
subsumptiorrelation,thatis, CTX1 = CTX2 & CTX3 Or CTX2 = CTX1 & CTX3, whereCTx3 is a
context condition.

Given binary symmetryclasseqSCs)that involve k relationalconditions,they can be combined
into a k-ary symmetry class, if they have non empty intersectithseachother. For example,if

sc1={cl, c3}, sc2={cl, c2} then theycanbe combinedinto sc3= {c1, c2, c3} dueto the
transitivity of thexoR relation.

A maximumsymmetryclassis a setwith a maximalnumberof relational conditionsthat can be
combined together.

3.4 The Counting Attribute Generation Rule

Suppose a k-ary maximum symmetry class of attributes (or relational conditions) {Al, A2, ...

has beendetectedin a given conceptdescription. The "counting attribute generationrule” (a
constructive induction operator) suggests to create in such a situagewnadtribute (dimensionin
the representationspace), called the counting attribute CA, defined by the arithmetic sum
[A1+A2+...+AK].

If the attributes are binary (or relatior@inditionsevaluateto O or 1), the countingattributesums
up the "evidence"contributedby individual attributesor conditionsin the maximum symmetry
class. Values of the counting attribute representthe number of relational conditions (binary
attributes) that hold for thgiven conceptexample,andits domain(value set)is the setof integer
values from O to k. If the conditions use multivalattibutes therthe countingattributesumsup
the values of constituentattributes. The following notation is introducedfor representinga
counting attribute:

#Attrin{Attribute Set: IREL VAL} 4)

where, Attribute Set is alist of attributes(from the maximum symmetryclassin our method),
IREL specifies an "internal" relation EQ, NEQ, GT,, GE orLE andVAL specifiesa value.
Suchan attributeis read:"The numberof attributesin the Attribute Setis in relation IREL with
VAL." If attributesare binary, thenthe notationfor the counting attributescan be simplified to:
#Attrin{Attribute Set}. To express a relational condition using a counting attribute, one writes:

#Attrin{Attribute Set : IREL VAL} REL Values (5)

where REL is one of {=, <>, <, >, >= or <=}, and Values stands for one or more posalins
of the attribute linked by the internal disjunction or the range operator ("..").

For example, to express M-of-Moncept("At leastM out of N propertiesfrom {P1, P2, ...PN}
hold" one would write: #Attrin{ P1, P2, .NP = M. To express the condition "Betweem2d 4

A}

(non-binary) attributes in the set {A2, A3, A5, A7, A9, A12} have value greater than 5, one would

write: #AttrIn{A2, A3, A5, A7, A9, A12: GT 5}=2v4.

To illustrate the advantageof introducing the counting attribute, let us describethe concept
represented in Fig. 9C. TieenplestDNF description of this concept is:
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~x0 & ~x1 & ~x2 & ~x3 or

~x0 & ~x1 & X2 & X3 or

~x0 & x1 & ~x2 & X3 or

~x0 & x1 & X2 & ~x3 or
x0O & ~x1 & ~x2 & X3 or
x0O & ~x1 & X2 & ~x3 or
x0 & x1 & ~x2 & ~x3 or
x0 & x1 & X2 & X3

The logically equivalent expression using the counting attribute is
[ #AttrIn{x0,x1,x2,x3} =0 v 2 v 4]

which is much shorter and alsasierto understandit reads:"Either none,two or fourattributes
from among x0, x1, x2, x3 take value 1").

The above examplesshow that the counting attribute representsa very powerful descriptive
concept. It allows one to express very concigalyide rangeof relationsfor which an equivalent
DNF expressiorwould be very complex.If the countingattributeinvolvesN binary attributes, it

allows representationof all combinationsof counts of N properties. There are 2N*1 such
combinations (® subsets multiplied by two attribute values for each subset).

Figure 9 illustratesthreeout of the 32 possibleconceptsthat can be expressedy one counting
attribute #Attrin{x0,x1,x2,x3}. In order to establish the vahfea conceptfor a given instance(a
cell in the diagram), the number of occurrencesof attribute value "1" in the attributevector
representing this instance is counted. If the number of "1s" matohesnceptdefinition thenthe
instancebelongsto the conceptand is markedusing "+"; otherwiseit doesnot belong,and is
marked by "-".

— | o— — "] —-— + + —-— 7] + — | — + "]
| @ L | @ - | @
13 13 {1
=[] [ | [=]=[=[+] [:] | [#]=]=]+] [
x1|x@8 x1|x0 x1|x@
@ |10 |1 [x3 @ | 1|01 [x3 |1 ]® |1 |x3
] 1 x2 [~} 1 x2 a 1 x2
A. At least 3-of-4 B. 1 or 4-0f-4 C. Even-of 4
[ #AttrIn{x0,x1,x2,x3} >= 3 ] [ #Attrin{x0,x1,x2,x3} = 1,4 ] [ #AttrIn{x0,x1,x2,x3} = 0,2,4 ]

Figure 9. Examples of-of-N concepts that can be represented by using the counting attribute
#AttrIn{x0,x1,x2,x3}.

The counting attribute generation ruépresents heuristicfor changingthe representatiolspace.
The following sectionjustifies the rule by showinga multistageprocess oftonstructingcounting
attributes.

3.5 Relating Logic To Arithmetic

The underlyingideaof the transitionfrom logic-typeto arithmetic-typedescriptionggoesback to
the link betweenthe binary systemanddigital computers.For several decadesgic circuits not
only facilitated logical operationsbut also arithmetic ones. Actually, all possible arithmetic
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operations, starting with addition through multiplication, enduiity the mostcomplexfunctions,
are in fact represented by logic circuits. A link between lagidarithmeticcould be expressedby
two logical operator&OR andAND on one side anthe arithmeticoperatoraDD on the other. The
truth table in Fig. 10a showke relationshipbetweenthe two logical operatorsandthe arithmetic
operator.Addition of two binary digits can be expressedising Carry and Sum. Carry can be
represented as logicalD, and Sum can be represented as logioal Other arithmetic operators,
such as multiplication, subtraction, can be expressed usingptheperator.

The truth table from Fig. 10a is equivalent with the diagram#sg. 10b and 10c. The diagramin
Fig. 10b shows how th&DD operator is represented using Carry and Sura.similar way, Fig.
10c shows how it is possibigith AND and XOR operatorsFinally, Fig. 10d isan abstractionof
the XOR-pattern in the binary domain.

(a) (b) (c) (d)

ADD ADD y ADD y XOR-pattern y
Carry | Sum carry | sum 1 AND | XOR || 1 1
X y AND XOR [ | |
0 0 0 0 Sum ~Carry 0 o ~AND 0 0
o 110 1 ~sum ~XOR
1 0 0 1 S _— |
1 11 o fpxfr o] [xf1 o] [x[1 o |

Figure 10. (a) Truthtablefor additionof two binary digits andits relationto the AND and XOR
operators. (b) Visualization of ta®D operator using Carry and Sum. (c) Visualization ofabe
operator usingND andXoR. (d) Visualization of alxOR-pattern.

It is easy to see that &R concept, determined by th@®R operator,could be readas Exactly 1-
of-2 concept. The equivalence of the logic and arithmetic operiatasefulin representingv-of-N
concepts, whiclgeneralizethe XOR concept.The logic representatiof M-of-N conceptsexhibits
the XOR symmetry,and canbe detectedoy searchingor XOR-patternsin the dataor hypotheses
(Fig. 10d).xoR symmetry implies that instances described by a rule (x &~y & ~x) belongto
the same class. Using a new attribiteRr-attribute, defined as (x & ~y or y &x) onecanmerge
areasof the same class membership.However, without removing the original attributes,the
representatiorspacewould just grow. In order to replacethe original attributeswith the one
describingxOR relationship, one also needs to add an additiati@bute describingeither (x & y)
or (~x & ~y) cell. Let us assume that (x & y) is used to definp-attribute. The remainingfourth
cell in the diagramcanbe uniquely representedis negationof the XOR and AND attributes(Fig
10c).

Fig. 11 shows such a transformationtlud representatiolspaceand the threeconceptsdefinedin
Fig. 9 (note the similar arrangementf the instancesn both representatiospaces)Attributes cO
and c2 represeaD-attributes, and c1 and c3 represenik-attributes. Because tlsamenumber
of attributes is replacing thariginal onesthe size of the representatioispaceremainsunchanged.
However, since areasdescribedby true values of xOR-attributeshave merged,thereforethe
number of instances has decreased. The crossedemksentmpossiblecombinationsof values
of the newattributes.The diagramsidentify thoseareasas (cO & c1) or (c2 & ¢3), which means
that instances described by true valuesax-attribute anchND-attributeare impossible(the same
way as Carry=1 and Sum=1 is irrelevant in defimo@®, Fig. 10a).

The impossibleareascan be easily removedby combining AND and XOR attributesinto ADD

attributes(Fig. 12). In orderto facilitate this operation,booleanvaluesare replacedby integers.
Hence, the new attributes are multivaluedthis representatioispace,it is easyto observeagain
the symmetry of the three concepts. This allows further transformations, i.e., msangimetrical
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subconcepts and replaciagd andxor with ADD. The final representatiospaceswith the three
conceptss givenin Fig. 13. Conceptexamplesn the final representatiorspace(Fig. 13) have
direct relationshipwith examplesn former representatiospaceseg.g. in Fig. 12 (note matching
patterns of related examples).

— e — "] — + — "] + — + "]
1 @ — @ — @
= =[+ o ) = +[-
= +[+ = =]+ of | [+]=[+ :
— 1 — 1 — 1
1 1 1
cl cOl cl cG' cl cB'
8|1]|]08]1|c3 @|1]0]1]c3 8 [1]|]06]|1]c3
a 1 c2 "] 1 c2 %} 1 c2
== Positive example == Negative example % Impossible instance
A. At least 3-of-4 B. 1 or 4-of-4 C. Even-of 4
The new attributes are defined as follows:
c0 <:: x0 & x1 cl<:x0&~x1 or c3 < X2 & ~x3 or
C2 <:: X2 & x3 x1 & ~x0 x3 & ~x2

Figure 11. Transformation merging symmetrical subconcepts.

== [ :
1 1
2 2
sl s1
@ [ 1| 2 |se @ [ 1 ]| 2 |se (@ | 1] 2 |se
A. At least 3-of-4 B. 1 or 4-of-4 C. Even-of 4
The new attributes are defined as follows: sO <:: x0 + x1 sl <:: X2 + x3

Figure 12. Transformation replacingND andxoOR with ADD. The concepts are symmetrical with
respectto attributessO and s1. The shadedareasmark XOR symmetriesin this representation
space.

===\ =l 2 tEt

lcalolal2]3] 4] [cafJola1f2[3[4a] [calofa[2]3]4]

A. At least 3-of-4 B. 1 or 4-0f-4 C. Even-of 4
CA <::s0 + sl (orin terms of original attribut€sA <:: x0 + x1 + x2 + x3)

Figure 13. The three concepts in the final representation space.
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In summary, the counting attribute generationrule allows direct transformationfrom the
representatiorspace with XOR-patterns (Fig. 9) to the representationspace using counting
attributes (Fig. 13).

3.6 Learning Conditional M-of-N Rules

The algorithm for building concept descriptions involving counttigbutesis basedon detecting
XOR patterns in the&NF expression of the concept to be learned.OMredescription is determined
using an AQ-basedrule learning program. Attributes constitutingXoR patternsare groupedinto
maximum symmetry classes. For eat$c-classthe countingattributegeneratiorrule is applied.
The algorithm is presented in Fig. 14.

1. Determinea DNF conceptdescriptionfrom training examplesprojectedinto the current representation
space. If the expression is "sufficiently” simple, STOP.

2. Detect XOR-patterns in the learned concept description.

3. If XOR-patterns do not exist, then STOP. Otherwise:

Build maximum symmetry class€¢®SCs). For eachMSC-class,introducea "counting attribute" and add
the attribute to the representation space. Project the training data into the new representation space.

Go to step 1.

Figure 14. Algorithm for changing the representation space basearpatterns.

Suppose, for example, the following patterns were detectedpRIx3, x1 XOR x5, andx1 XOR

X7. Then thevsc-class is {x1, x3, x5, x7}. Foeachmsc-classa "countingattribute"is created.

In the above example, such an attributgAgtrin{x1,x3,x5,x7}. ("The numberof attributesfrom

the set {x1,x3,x5,x7} that take value true"). Its domainis an integer interval from 0 to 4.
Conditions involving counting attributes can represent arbitrary internal disjunction of vatbhes of
attribute. Thus, a counting attribute replaces a gafugOR relationsconnectedy the transitivity
relation.

If a learning systemuses different representationalormalisms for data and hypothesege.g.
decisiontree basedsystems}hen detectingxoR-patternsin hypothesesnay be difficult. In such
situations XOR patterns may be detected by thea-drivenapproach. ImQ learningsystemshat
useVvL1 description language both for data and rules, functional-patterns can be detected aither by
data-drivenor a hypothesis-driverapproach.An examinationof descriptionsgeneratedoy FOIL
(Quinlan,1990) forMONK2 and similar problemsindicatesthat they contain XOR-patterns.The
proposed functional-patterns go beyond intra-constructionra@dconstructioroperatorsusedin
DuceandcicoL systemgMuggleton,1987; Muggleton & Buntine, 1988), which are forms of
rule-patterns in Horn-clauses (Wnek & Michalski, 1994Db).

4 |LLUSTRATIVE EXAMPLE: MONK2 PROBLEM

The concept to be learned is the MONK2 problem (Thrun et al., 1991; Wnek & MicH&l1SKia).
Figure 15A shows a diagram visualizing the problem. The total number of possible instahees in
representatiospaceis 432. In the diagram,the targetconceptis representedy 142 instances
(shaded area). The remaining 290 instances repritsamegationof the concept.The training set

is represented by 64 positive (+) and 105 negative (-) examples. The data contains no noise.

4.1Learning In The Original Representation Space

The MONK2 problemis hardfor symbolic learningsystems.In fact, none of the 18 symbolic
learnerstaking part in the internationalcompetitionlearnedthe MONK2 concept(Thrun et al.,
1991). This problem is also hard for the AQ15 program.
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A. MONK2 problem in the original RS

X6 X5 x4 B. After iteration #1 [@ @ la
=== |- =]=] [= = = |1 R [ - 1
- +| - - |=|= 2 1 Val - g i
=] [+ | - 1 9 at:ern == == = | T o 1
- [*]+] -F - - -l 2 N N - F-FF_|| o
= -- |+ - - - 13 - _____.|.i1
+ | —=[+]+] +[- | |*] - 2 = |=[F|=[FFH=|| 0
- - + |- B - 1 ___?_+.|._100
¥ [-- = 2 4 ¥ [+ = 0
+_+.|. _+:+- ¥ = - ; 1 6 [1/0[1 01 0[1 0] . Abstract repr. space
—— = — — = |1 0 1 0 | « Fewer unknown ex.
_+ * ¥ - * + [+ [+ 5 2 A 1 0 * Complex DNF descr.
2 * 93% accuracy
- \ +[=[+] ] e i (I
Y - - 2
‘: ‘ -I_-+:\_\_ T XOR patterns &
4 Counting Attribute Generation
3 I |2 9
+ |+ - - + - — 1 1
[ ] + - [F -] F-=|- |2 C. After iteration #2
- i ¥ *= ¥ 2 ¥ +H‘\- ; 2 === = =[] * Simple DNF descr.
— - = 3 [CAJO 1]2/37475]6] - 100% accuracy
+ | |- +] ] =[] - 17,
-— ¥- ol e . =[] J2 CA <:: #Attrin {c1,c2,c3,c4,c5,c6}
| +[ [+] |- +—= =1 4
- == = = H-F [[2 [CA=2]
x3[2[1]2/1]2[1]2][1]2[1]2[1]2[1]2]1]2]1  Complex DNF descr.
X2 | 3 2 1 3 2 1 3 2 1 * 77 % accuracy
x1 3 2 1

= Target concept: exactly two of the six attributes have their first value

[#] positive example [=] Negative example [JUnknown example

Figure 15. Learning thevONK2 problem in two iterations of th&Q-HCI method

The descriptionsgeneratedmay slightly vary with different parametersettingsbut all have the
following characteristicsthey are inaccurate(about 75% prediction accuracy),they consist of

many rules, and the rules use many conditions. The program's‘dstprgsentedn Fig. 16. As

many as 16 rules generalize only 64 positive examples. Almost all rules imliabe attributesin
describing the concept. It means that all attribateequallyimportantin the conceptdescription,

and moreover, the logical operators (and, or) are not capable of capturing meaningful relationships

4.2 Representation Space Transformation: Iteration #1

Descriptions produced by AQ15 in the original representation space contain certain fhaitemnes
easyto detect.Many conditionsinvolving the sameattributetendto usethe sameset of attribute
values.In other words they form value-patterngWnek and Michalski, 1994a). For example,
conditions involving attribute HS use the following groupings of values {s,0} nine timesour
times,{r,0} and{o} once.Takinginto consideratiorthat HS attributehasthree values{r,s, o},
this value-pattern suggedtsat the division of this setinto two subsets{r} and{s,o} shouldbe
meaningful. Similarly, valuesof other attributescan also be grouped. The AQ-HCI method

! The following parameters were uselisjoint coversmode, so the generategositive and negativedescriptionsare
disjoint over areas not represented by training examples; the most specifaregereratedduring rule generation
10 alternative solutionare consideredbeamwidth); amongthoserules, onerule is selectedhat bestsatisfiesthe
default criteria, i.e. maximizes the number of newly covered (not covered by previous rules) examples.
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changes the representation space according to the following new attribute definitions (Figp 17).
contrast the new representation with the origorad we also substitutenew attributesfor SM and
TI. Since these attributes are binary this is only a change in names.)

The transformed learning task is visualized in Fig. 15B. Therepvesentatiospacehasbecome
significantly smaller, there are only 64 instances in the saeevs. 432 instancesn the original
representation space. The number of attributes is the same but all of them are binary.

1 |[HS=r] & [BS=s,0]& [SM=y] & [HO=fb] & [JC=y,g,b] & [TI=n] (t:9, u:9)
2 [HS=s,0] & [BS=s,0]& [SM=y] & [HO=fb] & [JC=y,g,b] & [Tl=y] (t:9, u:9)
3 [HS=s,0] & [BS=s,0]& [SM=n] & [HO=fb] & [JC=r] & [Tl=y] (t:7, u:7)
4 [HS=r] & [BS=s,0]& [SM=n] & [HO=fb] & [JC=y,g,b] & [Tl=y] (t:5, u:b)
5 [HS=r,0] & [BS=r] & [HO=s,f] & [JC=g,b] & [TI=n] (t:5, u:4)
6 [HS=s,0] & [BS=r,0] & [SM=y] & [HO=s,b] & [JC=q] & [TI=n] (t:4, u:4)
7 [HS=s,0] & [BS=s,0]& [SM=n] & [HO=s] & [JC=y,g,b] & [Tl=y] (t:4, u:4)
8 [HS=s,0] & [BS=r] & [SM=y] & [HO=fb] & [JC=y] & [TI=n] (t:4, u:4)
9 [BS=r,0]& [SM=n] & [HO=s] & [JC=y,g] & [TI=n] (t:4, u:3)
10 [HS=s,0] & [BS=r,0] & [SM=n] & [HO=s,b] & [JC=r] & [TI=n] (t:3, u:3)
11 [HS=s,0] & [BS=r] & [SM=n] & [HO=fb] & [JC=y] & [Tl=y] (t:3, u:3)
12 [HS=s,0] & [BS=s,0]& [SM=y] & [HO=f,b] & [JC=r] & [TI=n] (t:2, u:2)
13 [HS=r] & [BS=s,0]& [SM=n] & [HO=fb] & [JC=r] & [TI=n] (t:2, u:2)
14 [HS=s,0] & [BS=s] & [SM=y] & [HO=s] & [JC=y,b] & [TI=n] (t:2, u:2)
15 [HS=0] & [BS=s] & [SM=y] & [HO=s] & [JC=¢] & [TI=n] (t:1, u:l)
16 [HS=r] & [BS=r] & [SM=n] & [HO=b] & [JC=y] & [TI=n] (t:1, u:l)
Figure 16. The MONK2 Concept Learned in the Original Representation Space

(c1=1) <:: [HS=r] (c2=1) <:: [BS=r] (c3=1) <:: [SM=y]

(cl =0) <:: [HS=s,0] (c2=0) <:: [BS=s,0] (c3=0) <:: [SM=n]

(c4 =1) <:: [HO=5] (c5=1) <:: [IC=r] (c6=1) <:: [TI=y]

(c4 = 0) <:: [HO=f,b] (c5=0) <:: [IC=y,0,b] (c6=0) <:: [TI=n]

Figure 17. Attributes Constructed From Value-patterns

The numberof instancesrepresentinghe targetconceptis 15, thereforein the worst case,the
number of rules requiredto describethe conceptis 15. This is a reduction in description
complexity in comparisonto the original representatiorspace.Eachinstancein the new space
representgrom 1 to 24 instanceghat were mappedfrom the original space.The transformation
doesnot causeambiguity in the new representatiorspace,i.e., eachnew instancerepresents
instances of the same class, either positive or negative. For more details see (Wnek, 1993).

In this representatiorspace,all possible positive examplesare present,and only 13 negative
examplesare missing(in the original spaceonly 64 positive examplesout of 142 are present).It
seems that learning should give better results. However, the AQ15 leprogrgmstill generates

a long and inaccurate description of the concept (B{. Errors are causedoy the overly general

rule #1. This rule covers not only two positive examples but also covers two negative instances.
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4.3 Representation Space Transformation: Iteration #2

The description obtained afttre first transformatiorof the representatiospacels more accurate
but still very complex (Figs. 18, 15B). Therefore,the searchfor a better representations
continued,andthe XOR-patternsarefound. Fig. 19 lists examplesof pairs of rules with XOR-
patternspresent All six attributesform a MSC class.From this classa new countingattributeis
constructed. It is defined as #Attrin{c1,c2,c3,c4,c5,c6}. Its domain is an integer interval foom O
6. Summingup valuesin the XOR-patternsalways gives the exactvalue 2. The final concept
description is [#Attrin{c1,c2,c3,c4,c5,c6} = 2], i.exactlytwo of the six attributesare present.
Fig. 15C visualizes the final representation space and the concept learned.

1 [c1=0] & [c3=0] & [e5=1] & [c6=0] (t:2, u:2)

2 [c1=1] & [c2=1] & [c3=0] & |[c4=0] & [c5=0] & [c6=0] (t:1, u:l)

3 [c1=1] & [c2=0] & [c3=1] & [c4=0] & [c5=0] & [c6=0] (t:1, u:l)

4 [c1=1] & [c2=0] & [c3=0] & |[c4=1] & [c5=0] & [c6=0] (t:1, u:l)

5 [c1=1] & [c2=0] & [c3=0] & [c4=0] & [c5=0] & [c6=1] (t:1, u:l)

6 [c1=0] & [c2=1] & [c3=1] & [c4=0] & [c5=0] & [c6=0] (t:1, u:l)

7 [c1=0] & [c2=1] & [c3=0] & |[c4=1] & [c5=0] & [c6=0] (t:1, u:l)

8 [c1=0] & [c2=1] & [c3=0] & |[c4=0] & [c5=0] & [c6=1] (t:1, u:l)

9 [c1=0] & [c2=0] & [c3=1] & [c4=1] & [c5=0] & [c6=0] (t:1, u:l)

10 [c1l=0] & [c2=0] & [c3=1] & [c4=0] & |[c5=1] & [c6=0] (t:1, u:l)

11 [c1l=0] & [c2=0] & [c3=1] & [c4=0] & [c5=0] & [c6=1] (t:1, u:l)

12 [c1=0] & [c2=0] & [c3=0] & [c4=1] & [c5=0] & [c6=1] (t:1, u:l)

13 [c1=0] & [c2=0] & [c3=0] & [c4=0] & [c5=1] & [c6=1] (t:1, u:l)

14 [cl=1] & [c2=0] & [c3=0] & [c4=0] & |[c5=1] & [c6=0] (t:1, u:l)

Figure 18. The Concept Learned in the Representation Space Developed in Iteration #1

Rule No

3 [c1=1] [c2=0] [c3=1] [c4=0] [c5=0] [c6=0]

6 [c1=0] [c2=1] [c3=1] [c4=0] [c5=0] [c6=0]
[c1=1] [c2=0] [c3=1] [c4=0] [c5=0] [c6=0]

5 [c1=1] [c2=0] [c3=0] [c4=0] [c5=0] [c6=1]

2 [c1=1] [c2=1] [c3=0] [c4=0] [c5=0] [c6=0]

7 [c1=0] [c2=1] [c3=0] [c4=1] [c5=0] [c6=0]

6 [c1=0] [c2=1] [c3=1] [c4=0] [c5=0] [c6=0]

10 [c1=0] [c2=0] [c3=1] [c4=0] [c5=1] [c6=0]

10 [c1=0] [c2=0] [c3=1] [c4=0] [c5=1] [c6=0]

14 [c1=1] [c2=0] [c3=0] [c4=0] [c5=1] [c6=0]

Figure 19. An Example of XOR-patterns Leading to the Creation of the Attribute
#Attrin{c1,c2,c3,c4,c5,c6}
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5 EXPERIMENTS ON LEARNING CONDITIONAL M-of-N RULES

To test the presented ideas, AlgeHCI system was applied to learnisgveralconceptghat canbe
simply represented as conditiom&bf-N rules. The first experimentnvolved the MONK2 problem
(Thrun et al., 1991). Th@ONK2 problem,which presenteducha significantdifficulty for many
machine learning programs (Thrun et al., 1991), was solved with 100% accurattye ammaimal
complexity of the description.

Concept: MONK?2: "Exactly two of the six attributes have their first value"
[#Attrin{First(al), First(a2), ...., First(@a6)} = 2]

Domain: 6 multivalued attributes (al, ..., a6)

Training set 142 examples out of 432

AQ15: Prediction accuracy: 77% Complexity: 16 rules

AQ17-HCI: Prediction accuracy: 100% Complexity: 1 rule

Figure 20. Results from learning theONK2 concept.

Further experimentsconcernedearning conceptsinvolving 6, 9, 10, and 16 binary attributes.
Figure 21 summarizes results from the experiments.

Let x0, x1, x2, x3, x4, x5, x6, X7, x8, x9, x10, x11, x12, x13, x14, x15, be binary attributes
S1 = {x0,x2,x4,x6,x8}, S2 = {x1,x3,x5,x7}, S3 = {x12,x13,x14,x15}, be sets of attributes

Concept: "At least 3 in S1 and at least 2 in S2"
[#AttrIn{x0,x2,x4,x6,x8} > = 3] & [ #Attrin{x1,x3,x5,x7} >= 2]
Domain: 9 binary attributes (x0, x1, ..., x8)
Training set 50% of all examples
AQ15: Prediction accuracy: 78% Complexity: 42 rules
AQL7-HCI: Prediction accuracy: 100%  Complexity: 1 rule
Concept: "At least 3 in S1, at least 2 in S2, and x9 holds"
[#AttrIn{x0,x2,x4,x6,x8}>=3] & [ #Attrin{x1,x3,x5,x7} >= 2] & [x9= 1 ]
Domain: 10 binary attributes (x0, x1, ..., x9)
Training set 20% of all examples
AQ15: Prediction accuracy: 96 % Complexity: 22 rules
AQL7-HCI: Prediction accuracy: 100%  Complexity: 1 rule
Concept: "At least 3 in Sl1, at least 2 in S2, and x9 holds
or exactly 2 in S3"
[#Attrin{x0,x2,x4,x6,x8} >= 3] & [#AttrIn{x1,x3,x5,x7}>= 2] & [ x9= 1]
or [ #Attrin{x12,x13,x14,x15} = 2 ]
Domain: 16 binary attributes (x0, x1, ..., x15)
Training set 10% of all examples
AQ15: Prediction accuracy: 93% Complexity: 92 rules
AQ17-HCI: Prediction accuracy: 100% Complexity: 5 rules

Figure 21. Summary of experiments on learning conditionalf-N rules.

The experiments show thab-HCI was very effectiven learningtheseconceptsTestingon more
complex conditionall-of-N concepts indicates radical improvement in m#dictionaccuracyand
simplicity of the descriptions, as compared toARQes system.
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6 CONCLUSION

The presented method can be applied to a vadgeof domainswherelogical conditionsneedto
be combinedwith simple arithmeticrelationsto capturethe essenceof the targetconcept.Such
domains include economics, medicine, computer vision, biochemistry.

Conceptof this type arevery difficult to learnby conventionalearningmethods.The proposed
methodlearnssuch conceptsby searchingfor XOrR symmetry patternsn initially createdDNF
descriptions, and this is a form of a hypothesis-driven constructive induction. Deiatterdsare

used to create "counting attributes” that enhance the knowledge representation space. Extending
representation space by such dimensions is a form of a task-oriented adaptatiapatiaitial
experiments have shown that the method is very effective in learning conditioralrules.

Future research needs to investigate the scope of problemkibtrthis methodis mosteffective
and the convergence of the proposed algorithm.

REFERENCES

Baffes, P.T. & Mooney, R.J. (1993). Symbolic Revisionof Theorieswith M-of-N Rules. In
Proceedingsf the 2nd International Workshopon Multistrategy Learning (pp. 69-75). Harpers
Ferry, WV: Morgan Kaufmann.

Bloedorn,E. & Michalski, R.S. (1991). Data Driven Constructive Inductionn AQ17-PRE:A
Method and Experimentsin Proceedingsof the Third International Conferenceon Tools for Al
(pp. 25-35). San Jose, CA.

Callan,J.P. & Utgoff, P.E. (1991). A TransformationaApproachto Constructivelnduction. In
Proceedings of the Eighth International Workshop on Machine Leafpingl22-126).Evanston,
IL: Morgan Kaufmann.

Fawcett, T.E& Utgoff, P.E. (1991). A Hybrid Methodfor FeatureGenerationln Proceedings
of the Eighth International Workshop &fachinelLearning(pp. 137-141).EvanstonL: Morgan
Kaufmann.

Jensen,G.M. (1975). Determination of SymmetricVL1 Formulas: Algorithm and Program
SYM4 Master'sthesis.(Tech.Rep.No. UIUCDCS-R-75-774) Urbana-ChampaigrJniversity
of Illinois, Department of Computer Science.

Michalski, R.S. (1969). Recognition of Total or Partial Symmetry in a Completdéhcompletely
SpecifiedSwitching Function.In Proceedingof the IV Congressof the International Federation
on Automatic Control (IFAGR7, 109-129.

Michalski, R.S. (1975). "Variable-valuedLogic and Its Application to PatternRecognitionand
MachineLearning."In D. Rine (Ed.) ComputerScienceand Multiple-ValuedLogic Theory and
Applications North-Holland Publishing.

Michalski, R.S. (1983). A Theoryand Methodologyof Inductive Learning.In R.S. Michalski,
J.G. Carbonell& T.M. Mitchell (Eds.), Machine Learning: An Artificial Intelligence Approach
Palo Alto CA: TIOGA Publishing.

Michalski, R.S., Mozetic, I., Hong, J. & Lavrac, N. (1986). The Multi-Purpose Incremental
Learning System AQ15 ants TestingApplicationto ThreeMedical Domains.In Proceedingof
AAAI-86(pp. 1041-1045). San Mateo, CA: Morgan Kaufmann.

Michalski, R.S., Rosenfeld, A. & Aloimonos, Y. (199&)achine Vision and.earning: Research
Issues and Direction§lech. Rep. No. MLI 94-6). Fairfax, VA: George Mason Universitgnter

for Machine Learning and Inference. (Tech. Rep. No. CAR-TR-739, CS-TR-3358). College Park,
MD: University of Maryland, Center for Automation Research.

Muggleton, S. (1987). Duce, an Oracle-BasedApproach to Constructive Induction. In
Proceedings of IJCAI-8(pp. 287-292). San Mateo, CA: Morgan Kaufmann.



20

Muggleton,S. & Buntine,W. (1988). Machinelnventionof First OrderPredicatesy Inverting
Resolution. InProceedingof the 5th International Conferenceon Machine Learning (pp. 339-
352). San Mateo, CA: Morgan Kaufmann.

Murphy, P. M. & PazzaniM. J. (1991). ID2-of-3: Constructive Inductiomf M-of-N Concepts
for Discriminatorsin Decision Trees. In Proceedingsof the 8th International Workshop on
Machine Learningpp. 183-187). Evanston, IL: Morgan Kaufmann.

Quinlan,J.R. (1990). Learning Logical Definitions from Relations.Machine Learning, 5, 239-
266.

Seshu,R. (1989). Solving the Parity Problem. In Proceedingsof EWSL-89(pp. 263-271).
Montpellier, France.

Spackman K.A. (1988). Learning CategoricalDecision Criteriain Biomedical Domains. In
Proceedingsof the 5th International Conferenceon Machine Learning (pp. 36-46). San Mateo,
CA: Morgan Kaufmann.

Thrun, S.B., Bala, J., Bloedorn, E., Bratko, I., Cestnink,B., Cheng,J., DeJdong, K.A.,
Dzeroski, S., Fahlman, S.E., Hamann, R., Kaufman, K., KélerKononenko,l., Kreuziger,
J., Michalski, R.S., Mitchell, T., PachowiczP., Vafaie,H., Van de Velde, W., Wenzel,W.,
Whnek, J. &Zhang,J. (1991). The MONK's Problems:A PerformanceComparisonof Different
Learning Algorithms(Tech. RepOctober).Pittsburgh,PA: CarnegieMellon University, School
of Computer Science.

Towell, G. G. & Shavlik, J. W. (1994). Refining SymboKnowledgeUsing NeuralNetworks.
In R.S. Michalski & G. Tecuci (EdsMachine Learning: A Multistrategy Approach, VBY. (pp.
405-429). San Mateo, CA: Morgan Kaufmann.

Whnek, J. (1993). Hypothesis-drivenConstructive Induction. (Doctoral Dissertation, George
Mason University, School of Information Technology and Engineering, Fairfax, At&).Arbor,
MI: University Microfilms Int.

Whnek, J. & Michalski, R.S. (1994a). ComparingSymbolic and SubsymbolicLearning: Three
Studies.In R.S. Michalski & G. Tecuci(Eds.), Machine Learning: A Multistrategy Approach,
Vol. 4, San Mateo, CA: Morgan Kaufmann.

Whnek, J. & Michalski, R.S. (1994b). Hypothesis-driven Construdtideictionin AQ17-HCI: A
Method and ExperimentMachine Learning, 14139-168.

Whnek, J. & Michalski, R.S. (1994c). Discovering Representatiorbpace Transformationsfor
Learning Concept Descriptions Combining DNF and M-of-N Rule®/dnking Notes othe ML-
COLT'94 Workshomn Constructive Inductiomnd Changeof Representatiofpp. 61-68). New
Brunswick, NJ.



