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Abstract

Knowledge scouts are software ageht autonomouslysearchfor and synthesizauser-oriented
knowledge(target knowledgg in large local or distributeddatabasesA knowledge generation
metalanguagelKGL, is usedto creating scripts defining such knowledge scouts. Knowledge
scouts operatein an inductive database,by which we mean a databasesystemin which
conventionaldataand knowledgemanagemenbperatorsare integratedwith a wide rangeof data
mining and inductive inferencgperatorsDiscoveredknowledgeis representedh two forms: (1)
attributional rules, which are rules in attributional calculus—a logic-basedlanguagebetween
propositional and predicate calculus, §8)Ylassociationgraphs which graphicallyand abstractly
representelationsexpressedby the rules. Thesegraphscan depict multi-argumentrelationships
amongdifferent conceptswith a visual indication of the relative strengthof each dependency.
Presenteddeasareillustratedby two simple knowledgescouts,one that seeksrelationsamong
lifestyles, environmentalconditions, symptomsand diseasesn a large medical databaseand
anotherthat searchegor patternsof children’sbehaviorin the National Youth Survey database.
The preliminary results indicate a high potentitility of the presentednethodologyas a tool for
deriving knowledge from databases.

Keywords: data miningknowledgediscovery,knowledgescouts,inductive databaseknowledge
visualization, knowledge generation language, association graphs, attributional calculus.



1 Introduction

When applying data mining tools to a ladgtabasea usermay haveto performmany repetitions
andtrials of variousoperationsheforedesiredknowledge(targetknowledge)is determined.This

processcan be particularly difficult andtime-consumingf the datamining systemincludesmany
different data mining operators/tools that can be applied to the database. Such a sttoatgfor

example,in the multistrategy data mining system INLEN (Michalski, 1997; Michalski and
Kaufman, 1998).

Another problem in data mining is how to spet#gget knowledgehat is, knowledgéhatis likely

to be of interest to a given useragroup of users.Obviously,suchknowledgecannotbe defined
precisely, as the whole purposeof the searchis to find somethingnew and unexpected An
additionalproblemis that the targetknowledgemay be changingover time, as it dependson the
current goals and current knowledge of the user. The latter indicaéesifor a mechanisnthatis

able to acquire and monitor the profile of the user’s interests, and apply this profile in thd@earch
target knowledge.

To address problems outlined above, the ideskabavledge scous proposed. Anowledgescout
is a software agent that employs resources afidurctivedatabasefor automaticallysearchingor
andsynthesizingargetknowledge By aninductive databaseve meana systemthat integratesa
conventionaldatabasewith inductive inferencecapabilities.Such capabilitiesallow a databasedo
answer queries asking fplausibleknowledgethat is, knowledge that isot directly or deductively
obtainablefrom the databasebut can be hypothesizedhroughinductive inferencefor the data.
Such knowledge can be the form of hypothesesboutfuture datapointsexpectedconsequences
from the data, generalized data summagesergingglobal patterns exceptiongrom hypothesized
patterns, suspected errors and implied inconsistencies, hypothetical plans synttasitieel data,
etc. (Michalski, 1983; Han et al.,1996; Imielinski, Virmani, and Abdulghani, 1996; Michalski,
1999). A general diagram of an inductive database is presented in Figure 1.

An inductive databasémplementsnew typesof databaseperatorghat are basedon methodsfor

inductiveinferencedevelopedn the fields of machinelearning,statistics,and uncertainreasoning.
These operators,together with conventional databaseoperators,are integrated into a single
knowledge generation language (KGIAn inductive database include&m@owledge basthat may
contain meta-knowledge, domasonstraintsspecificationsof attributetypesand domains,models
of users’interestsknowledgeobtainedin previousdatamining operationsetc. Using KGL, one
can implement different knowledge scouts, dedicated to pursuing variousktavgdedge A KGL



script that defines a knowledge scout includes a plan of operations to be perforttmedaiabase
(local or distributed), and an abstract definition of the target knowledge.
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Figure 1 A general diagram of an inductive database.

The target knowledgefor a scoutis defined abstractlyby specifying propertiesof pieces of
knowledgethat arelikely to be of interestto the given user(or a group of users).For example,a
target knowledge may be defined as “patterns that relate variables fregt Thio thosein the set
S”, or “patterns that achieve the highest samre given patternquality measure”(e.g., Kaufman
and Michalski, 1999), ofa classificationof datathat maximizesa criterion of clusteringquality”
(e.g., Michalski and Stepp, 1983).

In order to synthesizetarget knowledge,a knowledge scout may executelong sequencesf
different kindsof operationsnvolving data,intermediateresults,and backgroundknowledgefrom
the Knowledge Base. At every steptiis processan applicationof one operatormay dependon
the resultsof previousoperators. The user’s interestsand past relevantknowledgeare partially
defineda priori, and partially constructedand updatedduring the scout’s lifetime. A knowledge
scout can operate for a specific periodimie, or work continuouslyin the backgroundputputting
its findings when some predefined condition is raégr¢ conditior) or upon theuser’s requestAs
inductively derivedknowledgegenerallyhaslower certainty than directly or deductivelyobtained
knowledge resultsof inductive queriesare annotatedby certainty measuregfor example,by the
testing accuracy of the learned rules).



To implementthe abovecapabilities,one needsa knowledgerepresentatiosystemfor expressing
knowledge to be synthesized, and a knowledge generation lanfguatgfining knowledgescouts.
Theseissuesare addressedn the following three sections.Section 2 describesa knowledge
representatiorsystembasedon attributional rules, Section 3 describesassociationgraphs for
graphically representing the rules, and Section 4 describes KGL-ihjt@rknowledgegeneration
language.

2 Attributional Rules

The languagen which patternsor knowledgeof interestare to be expresseds essentialto the

ability to discoverthem.If the languagds too restricted,patternswill have complex expressions,
andthis, in turn, will maketheir discoverydifficult. If the languagds too rich, the patternsearch
spacemay becomecomputationallyprohibitive. In addition, for many applicationsit is important
that patternsare easyto understandand interpret (the comprehensibilitypostulate; Michalski,

1983). Guided by such considerationsye employ attributional calculus rules for expressing
patterns or knowledge of interest (Michalski, 1999).

The attributionalcalculusis an extensionof propositionalcalculusin which literals (propositions
and theirnegations)arereplacedby attributional conditions Suchconditionsrepresentelational
statements that bind one or more attributes with afstieir valuesor other attributes(seebelow).

Eachattributehasa domainanda type; the former defining its set of legal values,and the latter

characterizingan ordering relationshipamong the values. Attributional calculusis basedon

variable-valued logic system VL1 (Michalski, 1975).

An attributional condition is expressed in the fofmrel R], whereL (left sidg is an attribute,or
oneor more attributeswith the samedomainjoinedby “&” or “v” (theseoperatorsare called
internal conjunctionandinternal disjunction respectively);R (right side is a value or a list of
valuesjoined by the symbol“v” or theword “or” (calledinternal disjunctior), a pair of values
joined by “..” (calledrangé), or an attribute with theamedomainasthe attribute(s)in L; andrel
is a relational symbol from the set {&,>, 2, <,<}. A condition [L rel R] is true (or satisfied,
if expressiorL is in relationrel to R. For illustration,the following are examplesand explanations
of attributionalconditions. Note that attributional conditionsare simple to interpretand easyto
translate to equivalent natural language expressions.

[blood-pressure = normal] (the blood pressureof the patient is normal)
[income = 20K..30K] (the income ibetweer20K and 30K)
[color = red v blue] (the color is red or
blue)

[width & length > depth] (the width and length are both greater than the
depth)



Attributional rules used in this study are in the form <decision> if <conditions>, where
<decision> is a single attributionalcondition,and <conditions> is a conjunctionof one or more
attributional conditions. Theserules are a specialcaseof the parameterizedassociationrules
(PARSs), described in (Michalski, 1989). The association rules presented in (Agrawal, Imaetichski
Swami, 1993) could be viewed as a specialized form of PARs.

Attributional rulesthat characterizea patternin a databasecan be determinedusing an inductive
operatorbasedon the AQ-18 rule learning program (Kaufman and Michalski, 1999). Such an
operatorgeneratesules with annotationsspecifying the support disparity, completenessand
consistencyor each condition in the rule, and for each rula aghole (the if-part). The supportof
a condition [or, a rule], denotedby p, is defined as the numberof tuples representinga given
relationship (“positive examples”) that satisfy the condition (the rule).

The disparity, denotedby n, is defined as the numberof “negative examples” that satisfy the
condition(the rule). The completenesgjenotedcompl is definedas p / P, whereP is the total
number of training examples in the positive class. The consistency, deogad definedas (p /
p +n). The program also generataherannotationssuchas exceptionsambiguity, rule quality,
which are described elsewhere (e.g., Kaufman and Michalski, 1999).

The following exampleillustratesone of the attributional rules generatedoy a knowledgescout
seekingdemographigatternsin a World Factbookdatabasdin a somewhasimplified form; see
Section4). For this experiment,countriesof the world were divided into classesrepresenting
different fertility rateranges.The rule in Figure 2 characterized.6 of the 42 countrieswith the
smallest fertility rates (no more than 2 per woman).

Fertility <2 per woman if: p n compl cons

[Birth Rate =10..20 per 1000 peogle 42 20 100% 68%
[Religion isR. Catholicor Orthodoxor Anglicanor Shintd 24 31 57% 44%
[Infant Mortality Rate< 40 per 1000 babigs 41 54 98% 43%
[Population Growth Rates 4% 32 56 76% 36%
[Literacy= 70%] 35 71 83% 33%
[Life Expectancy =60..80 yearp 41 92 98% 31%
[Death Rate 5..15 per 1000 peogle 42 102 100% 29%
[Net Migration Rate> -10 per 1000 peop]e 42 140 100% 23%
Rule Total (all conditions): 16 O 38% 100%

Figure 2. Example of an annotated rule in the attributional calculus.



3 Association Graphs

Attributional rules provide details aboutrelationshipsamongattributesor concepts.To illustrate
suchrelationsgraphicallyand abstractly,we developeda visualizationmethod called association
graphs In an associationgraph, nodesrepresentattributesor concepts,and inter-node links
characterizerelationshipsamong nodes. The links are directed, weighted and annotated.The
direction of a link indicates the direction thie relationship.The weight of alink is representedhy
the thicknessof the link. The thicker the link, the strongerthe relationship(as specifiedby the
consistency othe attributionalcondition). Links areannotatedby symbolsindicating the type of
relationship between connected nodes. A monotonically growing (decreasing) functional
relationship between variablesimglicatedby the symbol“+” (“-*) attachedo the link between
corresponding nodes.

A functional relationshipthat has its maximum (minimum) in the middle of the range of the
independent(input) attribute is indicated by the symbol “*”  (“v”).  Links that represent
relationships that doot fall to any of the abovetypesareleft unlabeled. Thesesymbolsare also
used when the relationship only approximates ortbefelationshipclassedefinedabove.A rule
relating severalattributionalconditionsto anotherconditionis representedby linking the involved
conditionswith an arc. For example,Figure 3 showsan associationgraph representinghe rule
from Figure 2.
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Figure 3.An association graph representing the attributional rule from Figure 2.

Associationgraphscan simply representomplexmultivariaterelationships.They provide a more
advancedool for knowledgevisualizationthan that usedin somedatamining systems(e.g., in
CLEMENTINE, a datamining toolkit commerciallydevelopedby Integral Systems,Ltd.). One
major differenceas that associatiorgraphscan represenmulti-argumentrelations,not only binary
relations, as in CLEMENTINE. Another difference is that the association graphs are



representations at a higher abstraction level. Specifically, their nodes repitgmiries ratherthan
individual attribute values, and links representcompositeconditions employedin attributional
calculus, rather than only attribute-value conditions.

4

A Metlanguage for Defining Knowledge Scouts: KGL-1

Knowledgescoutsare definedby creatingscriptsin the knowledgegenerationlanguage(KGL).
Below is a brief descriptionof our first versionof sucha languagecalled KGL-1 (Kaufmanand
Michalski, 1998). KGL-1 has been designed according to the following requirements:

1.

The language integrates databaseoperators, knowledge base operators, and knowledge
generation operators in a single representational system.

Inductive inference programs, as well as other knowledge processing praggegregedn the
inductive database can be invoked by single KGL-1 operators.

Resultsfrom any KGL-1 operatorcanbe usedas inputs to any operatorfor which they are
semantically applicable.

Parameter¢o be usedin running any knowledge-generatinggrogram can be specified as
arguments of the corresponding KGL-1 operator.

KGL-1 statements can refer to variqu®pertiesof the datain the databaséFor example,*| f
there are 10% new examplesof classA in the databasejnvoke a rule learning operator”;
“Determine the percentage of missing values in the database.”)

KGL-1 statementganrefer to variouspropertiesof generatecknowledgeor the background
knowledge,in particular,to an attributeor attributevalues,to the type and the domain of any
attribute,the attributionalrules and their componentsto the groupsof rules (rulesets),and to
any componenbf the annotationf the rules, etc. (For example,“Select nominal attributes
with five or fewer values in their domain as dependantbles,and generatdor themdecision
rules that use only numerical attributes as an independent variables,” ¢trtipetenessf a
rule in a ruleset for a given class is at 1€, removefrom the rulesetall ruleswith a lower
completeness,” or “Determine all conditionsainuleset for a given classwhoseconsistency
is above 80%, support is between 30 and 50,Rapairt contains only single values.”)

Looping and branching are implemented as in conventional programming languages.

The languagehascapabilitiesfor invoking any datamanagemenknowledgemanagemenand
knowledge generation operators that may be involvéldeiextraction,manipulation,generation
anddisplayingof any dataor knowledgein the system.(For example,a script can requireto

selectas the target data a datasetcontaining attributesfrom a set A, generateattributional



rulesetsfor eachvalue of eachattributein A, selectthe bestrulesaccordingto a given quality
criterion, and then display the rules using a rule visualization operator.)

KGL-1 hasbeenpartially implementedn the INLEN-3 system(Michalski and Kaufman, 1998).

Each operator specifies an operation on the databaseand/or knowledge base, and contains
arguments that identify its input, output, and the parameters (Paratdgviatefrom the defaults.
Parameters of each operator make it possible to specialize it to savalhgldifferent forms, thus

eachoperatorcorrespondsn reality to a setof different dataand/or knowledgetransformations.
The input datato an operatordoesnot haveto be specified,if it is supposedo usedata obtained
from the last operator that determined that data applicable to this operator.

The following operatorshavealreadybeenintegratedinto the language,or are in the processof
integration through the adaptation of already implemented programs:

CHAR(Datatable, Class, Params): Characterigetaf entitiesin the Datatablethat belongto the
Class, by inducing their characteristic description (Michalski, 1983).

DIFF(Datatable,Class1,Class2,Params): Differentiate entities in Classlfrom Class2in the
Datatable, by inducing a discriminant description (Michalski, 1983).

SELECT (Target, Datatable,Params): Selectcomponentsfrom the Datatable,whose type is

defined by the Target. The Target can tadtributes”, in which casethe Datatableis projectedon

attributes selected according to thethodspecifiedin ParamsSucha methodmay just call for a
selection ofattributesdesignatedy the program(or a user),or may invoke an inferenceprogram
that seeksthe most relevantattributesfor a given task. The Targetcan also be “examples”, in

which casethe SELECT operatorselectsa subsetof recordsfrom the Datatableaccordingto the
method specified in ParanmSucha methodmay just call for a selectionof recordsdesignatedy

the program(or a user),or may invoke a program that seeksthe most representativaecords
(examples) for a given task.

TEST (Datatable Ruleset,Params): Testthe knowledgecontainedn the Rulesetagainsta set of
testingexamplesin the Datatable. Eachtesting exampleis classifiedbasedon the rule it best
matches, using a strict arflexible matchingmethod(Reinke,1984; Bergadancet al., 1992). The
operator generates a report the ruleset’spredictiveaccuracy and showshow eachexamplewas
classified.

CLASSIFY (Examples,Ruleset,Params): Assign the Examples(can be a single example)to
corresponding classes using the Ruleset. This operator invok#eranceprocedurehat applies
rules in the Rulesetto Examples.The output of this operatorincludesa list of recordsfrom
EXAMPLES, their classification and some measure of certainty that that classification.



CLUSTER(Datatable, Params): Split records in the Datatable into a sehoéptuatlusters.The
operatoris basedon the conceptuatlusteringprogramCLUSTERZ2 (Michalski and Stepp, 1983;
Fischthal,1997).1t definesclustersby attachinga columnto the Datatablewith indicesindicating
clusters, and describes each cluster by an attributional rule.

GENSTAT (Datatable Params): Determineand report statisticalcharacteristicof the Datatable,
such as means, modes and variances for attributes in subdataassociateavith differenttarget
variables. It can also generate covariances and correlation coefficients between attributes.

VISUALIZE(Input, Params):Visualize the datatableand/or attributional rules specifiedin the
Input, using a diagrammatic visualization method (Zhang and Michalski, 1999).

To illustrate how KGL-1 canbe usedfor building knowledgescouts,Figure4 presentsa KGL-1
scriptfor a simple knowledgescoutthat createsand examinesa knowledgebaseof relationships
between each attribute in théorld Factbookdatabaseandall the remainingattributes.Eachsuch
relationshipis expressedy a set of attributional rules, generatecoy the Char operator.One of
these rules was illustrated in Figure 2.

open PEOPLE {Select PEOPLE database}

do CHAR(decision=all, pfile=peoplel.Irn) {Characterize concepts
representing single values of
all attributes, using parameters
specified in file peoplel.lrn}

strongPGrulesl = #rules(PGR, compl >= 60) {Count rules for Population}

strongPGrules2 = #rules(PGR, supp >= 25) {Growth Rate that satisfy}

strongPGrules3 = #rules(PGR, {three different conditions}
num_conds(cons >= 50% and supp > 10) > 2) {for threshold of strength}

print “Number of strong PGR rules:
Type 1 =", strongPGrulesl, *,
Type 2 =*“, strongPGrules2, *,
Type 3 =", strongPGrules3

if #conditions(Fert) > 150 {Is Fert ruleset too complex?}
begin
do SELECT((attributes, decision=Fert,
thresh=4, out=PEOPLEZ2, criterion=max) {If so, find “thresh” best}
do CHAR(pfile=peoplel.Irn, decision=Fert) {independent attributes, then
end {recharacterize}
fori=1to6
begin {For each value of i from 1 to}
print “Number of LE conditions with p/n {6, count and display humber of}
ratio of at least”, i, “:1 =", {Life Expectancy conditions with}
#conditions(LE, cons >= i/(i+1)) {consistency 2il(i+1).}
end

Figure 4. A KGL-1 script for defining a knowledge scout exploring a demographic database.

The log file outputfrom the abovescriptis shownin Figure5. The first part of the outputshows
the numberof strongattributionalrules,as determinedby three different criteria imposedon the



rule strength (see scriphnotations)The first two criteria are self-explanatoryThe third criterion
acceptsattributional rulesin which the numberof conditionswith consistencynot smallerthan

50% andwith supportgreaterthan 10 is morethantwo). Becausehe Fertility rulesetwasfound

too complex(havingmorethan 150 conditions),a learning processwas repeatedusing only the

four most relevant independent attributes, as determindtelmperatorSELECT. The last part of

the output presentsnumbersof conditionsin the rulesetfor Life Expectancythat exceeddifferent
thresholds regarding thpe/ nratio (that is, support divided by dispariggsuminghat the disparity

is not zero; when disparity is zero, all thresholds are assumed to be satisfied). The last thimee lines
the output indicate thaherewasonly one conditionwith p/n ratio greateror equal4:1 in the Life
Expectancy ruleset.

Number of Strong PGR rules: Type 1 =1, Type 2=1, Type 3=7

Selecting best attributes from PEOPLE for concept Fert -- Attributes chosen:
Birth Rate, Predominant Religion, Life Expectancy (LE), Death Rate

Number of LE Conditions with p/n ratio of at least 1:1 = 25

Number of LE Conditions with p/n ratio of at least 2:1 = 10

Number of LE Conditions with p/n ratio of at least 3:1 =5

Number of LE Conditions with p/n ratio of at least 4:1 =1

Number of LE Conditions with p/n ratio of at least 5:1 =1

Number of LE Conditions with p/n ratio of at least 6:1 =1

Figure 5. Output from the KGL fragment from Figure 4.

The KGL-1 meta-language presented above provides a unique combination of featureis, mdtich
presentin other languagedor automatedknowledge discovery. Most current languagesuse a
Prolog-base@pproachand havequite limited typesof knowledgegenerationoperatorsavailable.
One of the exceptions to the Prolog-based approach is Ma8ith extendsthe SQL dataquery
language by adding to it the ability queryfor certaintypesof rulesandto invoke an association
rule generating operator (Imielinski, Virmani, and Abdulghani, 1996). KGL-1 diifens M-SQL

in that it is able to define complexdatamining plansthat may involve many different types of
knowledge generation operators, and more closely resembles a programming |émguaggiery
language.

A languagesomewhatelatedto KGL-1 is KQML, which providesmeansby which agentsmay
communicateamongthemselvesand exchangeinformation neededto completetheir individual
tasks (Finin et al. 1994). Another related language is imsedLEMENTINE, which allows a user
to specify a plan for a sequence of actions by a simple interface.

Summarizing, KGL-1 supportsa powerful attributional calculusrepresentationemploys a wide
rangeof symboliclearningandinferenceoperatorsallows operationson various componentof
attributional rules, the knowledge base and the database,and provides mechanisms for



implementingadvancedknowledgescouts. The attributionalrulesallow the systemto compactly
and understandably represent complex multidimensional relationships.

5 Study 1. A Knowledge Scout for Determining Relationshipsin a Medical Database

Among major means for improving media@cisionmaking and preventingdiseasess to develop
advancedmodelsof the relationshipsamong medical conditions, manifestations|ifestyles, and
therapies. Such models must be able to represent multidimensiahattations,for example that
a confluence of several factors may be needed to develop a given disease.

Ouir first efforts toward building such models involvdelvelopinga knowledgescoutthat searches
for strongpatternsin a databaseepresentingacts about diseasesmanifestationsand lifestyles,
developedoy the AmericanCancerSociety’s SecondCancerPreventionStudy (CPS-I11). For our
preliminary experimentsye selecteda small subsetof records(73,553recordsfrom 1.2 million),
which pertains to male non-smokers, ages 50-65.

Each patient was characterized in teohsibout30 attributes,such”“rotundity” (a function of the
patient’sheightand weight), the amountof exercisethe numberof hours of sleep,the education
level, the use of mouthwash, etc. Together with these charactesiaiasformation whetheror not

he had occurrence®f any of the 25 types of disease.The study involved building a knowledge
scout for determining strong patterns that link patients’ charactestadgestyleswith individual

diseases. Over 10,000 patterns were generatsthall collectionof themis presentedn Figure 6

using an association graph.
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Figure 6 An association graph linking a group of diseases with patient characteristics determined
from a subset of the ACS Second Cancer Prevention Study database.
This study was preliminary, and its results should not be taken as new medical knowledge.
However, these early results show a significant potential of the proposedmethodologyfor
discoverya usefulknowledge Associationgraphssuch as the one in Figure 6 can provide new
insights into relationshipsbetweendiseasesand lifestyles, and assist doctors in the disease
diagnosis and treatment. They can also serve as guides to patients for disease prevention.

6 Study 2: A Knowledge Scout for Determining Patternsin Parent-Child Database

This study concerned building a knowledge scout for exploring the National Youth Slateéase
(Elliott, 1976). Children from across the Unit8thteswere interviewedalongwith their parentsor
other adult guardians. The dataset contained 1735 records, each characterizimigl améermsof
about 600 multi-valued attributes. About 30% of the attributes repregemtedts’ responses55%
represented children’s’ responses, and the rest represented environmental factors.

A knowledgescoutwas createdby writing a KGL-1 script for generatingattributional rules for

each value (decision classi all non-metricattributes(415 decisionattributes,each of which had
from 2 to 9 values).For eachdecisionattribute, asindependentariableswere used25 attributes,
which were determinedas the mostrelevantto the given taskby the SELECT operator.From the



generatedrulesets, the scout determined strong attributional rules, defined as those whose
completeness was over 80%, or whose completeness was over 60% and support was over 50 cas

begin
fori=0to 414
begin
open SURVEY
do SELVAR(decision=i, out=SURVEY2, thresh=25, criterion=avg)
do DISCSET(decision=0, scope=1, compile=no)
end
end
open SURVEY2
fori=0to 414
begin
forall rules(i, compl > 80 or (compl > 60 and supp > 50))
print “decision =", i, “ class =", class, “ rno =", rno
end
end

Figure 7. A KGL-1 script for the PARENT-CHILD database exploration scout.

Figure 8showsan exampleof a strongrule generatedy the knowledgescout,which describesa
subset of the 1618 casé&¥ (n which the parent said that the child does not get into troutiiehe
law. Therewere 65 casesin which the parentsaid the child doesget into trouble with the law
(negative cases).

Cases in which parent said that child that does not get into trouble with the law are characterized by:
p n compl cons

[Child’s frequency of lying about agel per week 151252 93% 96%
[Child says stealing over $50wsongor very wrong 158760 99% 96%
[Child hired prostitute in past yeditwice 1603 63 99% 96%
[Child stole car in past yedrtwiceg 161264 99% 96%
Rule Total: 137654 85% 96%

Figure 8 An example of an attributional rule generated in Study 2.

As shownin Figure 8, the found rule covers1376 positive casesand 54 negativecasesandthus
can be viewed as a strong pattern. In the rule, all conditions had completenesof 99% and
consistency 96%, except for the first condition that had completeness 93%.

The study have shown that the proposed approach produces rules easy to interpret and understar
While the goal of the study was not to produce new sociological knowledge, the obtained results
show that the proposed approach has a potential for producing such knowledge.



7 Summary and Future Research

This paper presented a noweéthodologyfor integratingmachinelearningand inferencemethods
with databaseoperatorsfor the purposeof conducting complex data mining and knowledge
discoveryoperationsWe introducedthe conceptof a knowledgescoutas a softwareagentthat
utilizes resource®f aninductive databasdo searchfor and synthesizetargetknowledge,that is
knowledgeof interestto a particularuseror group of users.Such knowledgemay include, e.g.,
strong patterns, relationshipsamong different groups of attributes, hypothesesabout future
datapointsgualitativedatadescriptionsplausibleknowledgederived from generatechypotheses,
etc.

An inductivedatabasevas definedas a databaseystemthat integratesconventionaldatabasevith
inductive inference and other data mining operatorsthrough a single knowledge generation
language. Such a languaigeludesconventionaldatabas@peratorswith operatorsor conducting
inductive inference and managing knowledge in the knowledge base. Knowtsigeare defined
by scriptsin the knowledgegenerationlanguage An initial versionof sucha language KGL-1,
implemented in the INLEN-3 inductive database system, has been briefly described.

An important aspect of this research is that knowledge generatewiedgescoutsis expressed
in a form that is easyto interpret and understand.This featureis due to the employmentof
attributional calculus, a highly expressivebut computationally simple description language.
Associationgraphswere introducedas a meansfor visually and abstractly representingmulti-
argument relationship defined by attributional rules.

Among topics for future research is how knowledge scouts can build, update and enogésof
the users’interestsin orderto synthesizeknowledge thatis mostrelevantfor the userat a given
stageof dataexploration.Researclon incrementalearningand conceptdrift in machinelearning
appears to be highly relevant for such a task (e.g., Maloof and Michalski, 1999).

Another research topic is to scale up the KGL-1 inductive inference operators theyitan work
efficiently with very large databasesSince there are many operatorsinvolved, such a research
project will require a significant effort. An interestingtopic is to integrateone of the existing
knowledge base systems, for examplARKA (Taylor, Stoffel, and Hendler,1997; Stoffel, Taylor,
andHendler,1997)with INLEN 3. Other topics for future researchinclude the developmentf
operators for temporal trend prediction and for scaling up the conceptual clustering operator.
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